Close Menu

Sample Forensic Chemistry Courses

Forensic Chemistry (CHEM 475)

This course will provide an introduction to forensic chemistry and prepare students to build a sound knowledge in chemical, biochemical, and instrumental methods for forensic analysis and statistical analysis of forensic data. The class will cover principles and applications of chemical, biochemical, spectroscopic, and chromatographic methods for analysis and characterization of forensic samples. Potential topics include forensic applications of UV-Visible, IR, Raman, NMR, atomic absorption (AA) spectroscopy, fluorescence microscopy, X-ray, mass spectrometry; chromatographic methods (GC, HPLC, and TLC) and capillary electrophoresis for separation of forensics; analysis and identification of enforced drugs; colorimetric methods; microscopy and immunoassays for forensic examination; chemistry in examination and analysis of chemical, biological, and physical forensic samples (alcohol, carbon monoxide, papers, hair, gunpowder, inks, fibers, paints, firearms, fingerprint, palmprint, documents, and body fluid and blood samples); crime lab services; forensic statistics; introduction to international forensic databases.

Forensic Chemistry Laboratory (CHEM 476)

This lab course will cover chemical, spectroscopic, and chromatographic methods for analysis and characterization of forensic samples. Students will gain hands-on lab experience in instrumental, colorimetric, and microscopic analysis of forensic samples, controlled substances, and standards. Potential topics include: colorimetric assay for identification and quantification of illicit drugs; fingerprint chemistry; IR, Raman, Fluorescence, and NMR-based spectroscopic analysis of controlled substances, forensic samples, and gold standards; GC-MS, HPLC, and TLC for detection and separation of forensic samples; spot testing and microscopic analysis and characterization of biologic fluids and forensic samples; construction of calibration curves; analysis of forensic samples using an international database including paint data query (PDQ), NIST’s forensic database trace evidence table, international ink library, glass evidence reference; introduction to visualization software.

Analytical method development Lab (CHEM 463)

In this laboratory course, students will learn about method development and assessment for analysis of chemicals, organic compounds, polymers, drugs, pharmaceuticals, and biopharmaceuticals. Students will gain hands-on experience in quantitative analysis and quality assurance and control of diverse chemicals and bioactive agents. This course will foster students to develop quantitative and technical analysis techniques, literature comprehension, critical thinking, problem-solving, and communication skills. The literature and guidance on analytical method development and validation reported by the industry and government agencies will be studied. Potential topics include: analytical separation; instrumental analysis; chromatographic and electrophoretic methods; quality assurance and control; analytical method validation; sampling, preparations and storage of samples and standard solutions; physiochemical characterization; statistical analysis; good laboratory practice (GLP) requirement; validation, verification, and documentation of analytical testing methods and procedure.

Seminar in Special Topics (CHEM 495)

This seminar course is designed to provide students with opportunities to learn about recent development in specialized chemistry areas including bioanalytical chemistry, environmental chemistry, forensic chemistry, medicinal chemistry, and computational chemistry and biochemistry. Students are expected to develop written and oral communication skills on the advanced and specialized topics.